데이터 세트는 쓰던 걸 쓰고, classifier를 만든다.
library(e1071)
classifier = svm(formula = Purchased ~ .,
data = training_set,
type = 'C-classification',
kernel = 'radial')
더보기
library(ElemStatLearn)
set = training_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Age', 'EstimatedSalary')
y_grid = predict(classifier, newdata = grid_set)
plot(set[, -3],
main = 'Kernel SVM (Training set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
더보기
library(ElemStatLearn)
set = test_set
X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
grid_set = expand.grid(X1, X2)
colnames(grid_set) = c('Age', 'EstimatedSalary')
y_grid = predict(classifier, newdata = grid_set)
plot(set[, -3], main = 'Kernel SVM (Test set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
선형 커널과 다르게, 비선형 커널 SVM이 잘 예측한 것을 볼 수 있다.
'AI > 분류' 카테고리의 다른 글
[분류 - 11] 나이브 베이즈 분류(Naive Bayes Classifier)란? (0) | 2022.05.01 |
---|---|
[분류 - 10] 베이즈 정리(Bayes Theorem) (0) | 2022.05.01 |
[분류 - 8 ] 비선형 커널 SVR (0) | 2022.04.30 |
[분류 - 7] Kernel SVM이란? (0) | 2022.04.30 |
[분류 - 6] SVM 실습 (0) | 2022.04.30 |
댓글