의사 결정 나무 회귀1 [회귀 - 18] R을 이용한 랜덤 포레스트 실습 랜덤 포레스트 라이브러리를 설치하고 아래의 코드를 실행한다. library(randomForest) set.seed(1234) regressor = randomForest(x = dataset[-2], y = dataset$Salary, ntree = 500) # 나무의 갯수 predict(regressor, data.frame(Level = 6.5)) 결과 값 : 160907.7 이는 A의 말한 16만 달러와 매우 흡사한 결과다. 그래프를 그려보면, library(ggplot2) x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), c.. 2022. 4. 25. 이전 1 다음